杨裕民
2023-02-02
更新时间:2023-02-03 17:12:08作者:百科
[拼音]:bukedingyixing lilun
[外文]:theory of undefinability
模型论中关于形式语言表达能力的一种研究。在这种研究中,影响较大的有A.帕多瓦、A.塔尔斯基和E.W.贝特等人。可(不可)定义性概念在递归论和公理集合论(见集合论)中被广泛使用,其中有不少特殊的可定义性概念及有关结果,如递归论中的分层理论,公理集合论中的可构成集等。
设u是形式语言L的一个模型,a是u的一个元素,如果存在L中一个式子嗞(x),使a是u中唯一的适合嗞(x) 的元素,则称a为u中的可定义元素,否则称a为u中的不可定义元素。类似的还可以给出可(不可)定义的函数、集合等概念,它们都可被包含在下述的“可(不可)定义谓词”概念中。设P(x1,...,xn)是u上的一个谓词,如果存在L中一个式子嗞(x1,...,xn),使对u中任何元素a1,...,an都有:P(a1,...,an) 成立当且仅当嗞(x1,...,xn)在u中为真,则称P(x1,...,xn)为在u上可定义的谓词;否则称P(x1,...,xn)为在u上不可定义的谓词。在一般情况下,并不提出特定的模型u,而是在形式语言中讨论可定义性概念。设L是一个形式语言,P和P'是L之外的两个不同的n元谓词符号,∑(P)是语言 L∪{P}中的一组语句,∑(P')是语言L∪{P'}中相应的语句组。
(1)如果在 ∑(P)∪∑(P')的每一模型中都有 (凬x1,...,xn)[P(x1,...,xn)凮P'(x1,...,xn)]成立,则称 ∑(P)隐含地定义了谓词P。
(2)如果存在L中一个式子嗞(x1,...,xn),使在∑(P)的每一个模型中都有
(凬x1,...,xn)[P(x1,...,xn)凮嗞(x1,...,xn)]成立,则称∑(P)明显地定义了谓词P。
由以上定义可以看出,如果∑(P)明显地定义P,则它也隐含地定义P。所以,如果要说明某一组语句∑(P)不能明显地定义P,只需说明 ∑(P)不能隐含地定义P就够了,换句话也就是说,只需找到∑(P)∪∑(P')的一个模型,在其中P与P'有不同的解释就够了。这一方法称为帕多瓦方法。在这方面,贝特在帕多瓦和塔尔斯基的工作基础上进一步证明了:∑(P)隐含地定义P当且仅当∑(P)明显地定义P。从而表明,如果∑(P)不能明显地定义P,则这种不可定义性必能用帕多瓦方法来说明。
在具体模型中的不可定义性方面,塔尔斯基有一个关于自然数系统中真语句集不可定义性的著名定理,其内容如下:令语言 L={+,·,S,O},取L的模型=(N,+,·,S,O),其中 N为自然数集,S为“后继”运算,考虑L中一切在中为真的语句的集合T,通过适当的有效编码 ,就可以把 T看作N的子集。塔尔斯基定理是说:T是不可定义的。该定理与关于的判定问题的不可解性有一定联系。
80年代以来,在模型论中对于模型的范畴性,也就是它的完备理论的范畴性,有较多的研究,从性质上说,这是一种关于可定义性的广义研究。例如,有理数域不是埲 -范畴的,其含义是:在可数无限域范围内,有理数域不能用关于它的一切一阶真语句所成的集合唯一地刻划;又如,复数域是埌 -范畴的,其含义是:在基数为埌的无限域范围内,复数域可以用关于它的一切一阶真语句所成的集合唯一地刻划。